Q.P. Code: 60777

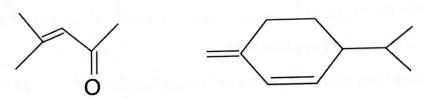
Third Semester M.Sc. Degree Examination, January/February 2020

(CBCS Scheme)

Chemistry

Paper C 303 : OC — ORGANIC SPECTROSCOPY

Time: 3 Hours]


[Max. Marks: 70

Instructions to Candidates: Answer question No. 1 and any five of the remaining.

Answer any **TEN** of the following questions:

 $(10 \times 2 = 20)$

- (a) Explain why stretching frequency of carbon nitrogen triple bond is greater than that of single bond.
- (b) Carbonyl compounds show weak bands >285 nm in their UV spectra. Account for the presence of the bands.
- (c) Calculate the λ max for the followings:

- (d) Mention the different types of electronic transitions in UV-Vis spectroscopy. Arrange them in the decreasing order of their energy.
- (e) State the rule of multiplicity in ¹H NMR spectroscopy. Give an example.
- (f) Name the different types of relaxation process in NMR. Which process is responsible for NMR phenomenon?
- (g) Why ethylene protons are deshielded than acetylene protons?
- (h) Define the terms chemical equivalence and magnetic equivalence of protons in NMR spectroscopy.
- (i) What is matrix assisted laser desorption/ionization in mass spectrometry?
- (j) How will you distinguish t-butyl benzene and isobutyl benzene by mass spectrometry?

Q.P. Code: 60777

- How will you distinguish the anthranilic acid and 4-aminobenzoic acid (k) using IR spectrometry?
- How 'H NMR spectroscopy is useful to differentiate between geometrical (1) isomers?
- Explain why band position of both the $\pi \to \pi^*$ and $n \to \pi^*$ transitions of a compounds are shifted when solvent is changed from non-polar to polar. 2. (a)
 - Discuss the factors affecting the group frequency in IR spectroscopy. (b)
 - Explain the applications of IR spectroscopy in the study of H-bonding. (4 + 3 + 3 = 10)(c)
- Explain the first order and second order spin system with suitable 3. (a) examples in NMR spectroscopy.
 - (5 + 5 = 10)Write a note on chemical shift reagents and its applications. (b)
- Discuss the factors affecting the chemical shifts in ¹H NMR spectroscopy. 4. (a)
 - Write briefly on: (b)
 - HETCOR and its applications. (i)
 - Nuclear Overhauser Effect and its applications. (4 + 3 + 3 = 10)(ii)
- Explain MALDI and FAB methods of ionization. 5. (a)
 - Write a note on McLafferty rearrangement and its applications. (5 + 5 = 10)(b)
- Discuss the factors affecting the coupling constant in PMR spectroscopy. 6. (a)
 - Deduce the structure of an organic compound with the help of the following (b) data and assign the values :

Molecular formula : C₈H₈NOBr;

UV-Vis (\(\lambda\) max): 252; IR (cm-1): 3294, 3054, 1670, 1455, 1311 and 606;

¹H NMR (δ , ppm): 10.03 (s, 1H), 7.64-7.39 (m, 4H), 2.05 (s, 3H);

EIMS (m/z): 213, 211 (M+), 173, 171, 92, 53 and 43 (base peak).

(5 + 5 = 1)

Q.P. Code: 60777

- (a) Discuss the 2-D homoannular correlation spectroscopy (COSY) with the help of suitable example.
 - (b) Deduce the structure of a organic compound with the help of following data and assign the values:

Molecular formula: C₈H₁₄;

UV-Vis (λ max): No strong band >200 nm;

IR (cm-1): 2983, 2938, 1484 and 1338;

¹H NMR (δ, ppm) : 2.12 (t, 4H, J = 8Hz), 1.48 (sextet, 4H, J = 8Hz), 0.9 (t, 6H, J = 8Hz). (5 + 5 = 10)

- 8. (a) State and explain Nitrogen rule. How this rule is useful in structure elucidation of organic compounds?
 - (b) Account for the peaks observed in the mass spectrum of the following compounds:
 - (i) $CH_3(CH_2)_4CH_2Br$; m/z = 135, 137 and 85.
 - (ii) $(CH_3)_2CH O (CH_2)_4CH_3$; m/z = 115 and 71. (5 + 5 = 10)

Third Semester M.Sc. Degree Examination, January/February 2020

(CBCS Scheme)

Chemistry

Paper C 302 OC — CHEMISTRY OF NATURAL PRODUCTS

Time: 3 Hours/

Instructions to Candidates: Answer question No. 1 and any five of the remaining.

1.	Answer any TEN of the fo	TEN of the following questions :	$(10 \times 2 = 20)$	

- (a) What is special isoprene rule? Draw the structure of limonene and mark the isoprene units.
- (b) What are terpenoids? Write the general classification of terpenoids.
- (c) Discuss the Nametkin rearrangement of camphene.
- (d) Write the synthesis of hygrine.
- (e) What is Ziesel's method? Mention its application in the alkaloid chemistry citing suitable example.
- (f) Formulate a synthesis of ephedrine.
- (g) Predict the products and name them :

- (h) Write the structure of purine and pyrimidine bases present in DNA.
- (i) How are hydroxyl groups of sugar in nucleic acid protected?
- (j) What are prostaglandins? Write the biological functions of prostaglandins.
- (k) What are insect pheromones? Give any two examples.
- Write the structures of exo and endo-brevicomin.
- (a) Describe the conversion of santonin into desmotroposantonin and santonic acid.
 - (b) Elucidate the structure of gibberrillic acid. (5 + 5 = 10)
- (a) Formulate the steps involved in the synthesis of beta-caryophyllene.
 - (b) How was the structure of beta-carotene established? (5 + 5 = 10)